We are grateful to NNSFC and SKLSC for financial support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JA1002). Services for accessing these data are described at the back of the journal.

References

Sheldrick, G. M. (1994). SHELXTL/PC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Siemens (1994). SAINT. Data Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Data Collection Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Smith, D. A., Zhuang, B., Newton, W. E., McDonald, J. W. \& Schultz. F. A. (1987). Inorg. Chem. 26, 2524-2531

Zhuang, B., Huang, L., He, L., Yang, Y. \& Lu, J. (1986). Acta Chim. Sin. 44, 294-300.
Zhuang, B., Huang, L., He, L., Yang, Y. \& Lu, J. (1989). Inorg. Chim. Acta, 157, 85-90.
Zhuang, B., McDonald, J. W., Schultz, F. A. \& Newton, W. E. (1984). Organometallics, 3, 943-945.
Zhuang, B., Pan, G. \& Huang, L. (1996). Polyhedron, 15, 3019-3025.

Acta Cryst. (1999). C55, 2049-2051

Hexaaquazinc(II) bis[N -(4-amino-1-methyl-5-nitroso-6-oxo-1,6-dihydropyrimidin-2-yl)glycinate] dihydrate

Paloma Arranz-Mascarós, ${ }^{a}$ M. Luz Godino, ${ }^{a}$ Rafael López, ${ }^{a}$ Rafael Cuesta, ${ }^{b}$ Cristóbal ValenzuelaCalahorro ${ }^{c}$ and Daniel Martín-Ramos ${ }^{d}$
${ }^{a}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, ${ }^{b}$ Departamento de Química Inorgánica y Orgánica, EUP de Linares, Universidad de Jaén, 23700 Linares (Jaén), Spain, ${ }^{\text {c }}$ Departamento de Química Inorgánica, Universidad de Granada, 18071 Granada, Spain, and ${ }^{d}$ Departamento de Mineralogía y Petrología, Universidad de Granada, 18071 Granada, Spain. E-mail: parranz@ujaen.es
(Received I June 1999; accepted 12 July 1999)

Abstract

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{5} \mathrm{O}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the crystal structure consists of a stacking along the b

axis of hexaaquazinc(II) cations which lie on inversion centres, glycinate anions and water molecules.

Comment

The title compound, (I), was obtained during our continuing research on the reactivity of metal ions with N -protected amino acids. The introduction of a substituent at the amino group in an α-amino acid gives rise to N-protected amino acids, which are of interest for the following reasons: (i) the N-substituent (4-amino-1-methyl-5-nitroso-6-oxo-1,6-dihydropyrimidine) is an analogue of the potent antitumour agent 2,4-diamino-6-benzyloxy-5-nitrosopyrimidine (Pegg et al., 1995; Loktinova \& Pegg, 1996; Roy et al., 1996); (ii) they are especially useful in directing peptide synthesis (Haurowitz, 1963) with markedly reduced racemization (Goldberg \& Dice, 1974; Photaki, 1974); (iii) the involvement of these compounds in biological processes has been proved in many cases (Bonamartini Corradi, 1992); (iv) the possibility of modifying the chelating behaviour of the amino acid depending on the nature of the substituent (Arranz Mascarós et al., 1999). We have found in previous studies that in the case of glycine with 4 -amino-1-methyl-5-nitroso-6-oxo-1,6-dihydropyrimidine as the N-substituent, the amino acid residue acts as a monodentate ligand towards metal ions ($\mathrm{Mn}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}, \mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Cd}^{\mathrm{II}}$) through the carboxylate group in mono- or bidentate mode (Arranz Mascarós, 1997). These compounds have tremendous versatility in the formation of hydrogen-bonded complexes because of the presence of numerous hydrogen-bond donor and acceptor groups, and it is well known that in the case of nucleic acid bases, these interactions determine the specificity of recognition between nucleic acid bases and DNA.

(I)

The crystal structure of the title complex consists of a stack along the b axis consisting of hexaaquazinc(II) cations, glycinate anions and water molecules (Fig. 1). The Zn^{11} atom is positioned on a centre of inversion and is hexacoordinated by water molecules with $D_{2 h}$ geometry.

The $\mathrm{Zn}-\mathrm{O}$ bond lengths vary between 2.048 (1) and 2.143 (1) \AA, and the $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ angles are close to 90 or 180°. These results are in agreement with usual values (Mak \& Huang, 1987).

On the other hand, certain bond lengths differ from those found (values in brackets) in neutral N-(4-amino-

Fig. 1. A view of the title complex with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

1-methyl-5-nitroso-6-oxo-1,6-dihydropyrimidin-2-yl)glycine (Low et al., 1997), particularly C22—O21 1.257 (3) [1.292 (3) Å], C22-O22 1.243 (2) [1.207 (3) Å] and $\mathrm{C} 21-\mathrm{C} 221.531$ (2) \AA [1.497 (3) A]. These distances are consistent with deprotonation of the carboxyl group in (I). The $\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 22$ torsion angle is similar for the two compounds.

The packing is stabilized by a large number of hydrogen bonds. All the H atoms of the coordinated water molecules are involved in hydrogen-bond formation. The nitroso 05 atom takes part as an acceptor in an intramolecular $\mathrm{N} 4-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the adjacent 4-amino group to form a planar six-membered ring. Geometric details of the hydrogen bonding are given in Table 2.

Experimental

The ligand N-(4-amino-1-methyl-5-nitroso-6-oxo-1,6-dihydro-pyrimidin-2-yl)glycine was prepared according to the method of Arranz Mascarós et al. (1998). Complex (I) was obtained from aqueous solution at $\mathrm{pH} c a \quad 6.8 . \mathrm{ZnCl}_{2}(0.75 \mathrm{mmol})$, dissolved in the minimum amount of water, was added to a solution of the potassium salt of the ligand $(0.75 \mathrm{mmol}$, equimolar mixture) in the minimum amount of water (50 ml). A pink crystalline precipitate appeared and was filtered off, washed repeatedly with diethyl ether and dried over $\mathrm{P}_{4} \mathrm{O}_{10}$. Analysis, calculated for $\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{~N}_{10} \mathrm{O}_{16} \mathrm{Zn}$: C $25.4, \mathrm{H} 4.8, \mathrm{~N}$ 21.2%; found C 25.9 , H $4.3, \mathrm{~N} 21.4 \%$.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{4}\right)_{2} \cdots$ $2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=661.87$
Monoclinic
$P 2_{1} / n$
$a=6.9473(6) \AA$
$b=7.4535(6) \AA$
$c=25.0846(17) \AA$
$\beta=96.998(6)^{\circ}$
$V=1289.25(18) \AA^{3}$
$Z=2$
$D_{x}=1.705 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\mu=1.048 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$
Pink

Data collection

Siemens $P 4$ diffractometer
$2 \theta / \omega$ scans
Absorption correction:
empirical (North et al., 1968)
$T_{\text {min }}=0.788, T_{\text {max }}=0.855$
5178 measured reflections
3715 independent reflections 2746 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.087$
$S=0.985$
3715 reflections
235 parameters
H atoms treated by a mixture of independent and constrained refinement
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=29.99^{\circ}$
$h=-1 \rightarrow 9$
$k=-1 \rightarrow 10$
$l=-35 \rightarrow 35$
4 standard reflections every 2.4 reflections frequency: 120 min intensity decay: 1.2%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0432 P)^{2}\right. \\
& +0.0019 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \text {. } \\
& \Delta \rho_{\text {max }}=0.385 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.293 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Selected geometric parameters (\AA A, ${ }^{\circ}$)

$\mathrm{Znl}-\mathrm{O} 2 W$	$2.0485(13)$	$\mathrm{C} 6-\mathrm{N} 1$	$1.397(2)$
$\mathrm{ZnI}-\mathrm{O} 3 W^{\prime}$	$2.0974(13)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.450(2)$
$\mathrm{Zn}-\mathrm{O} 1 W$	$2.1432(14)$	$\mathrm{N}-\mathrm{C} 2$	$1.377(2)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.335(2)$	$\mathrm{N} 1-\mathrm{Cl}$	$1.468(2)$
$\mathrm{N} 2-\mathrm{C} 21$	$1.449(2)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.445(2)$

$\mathrm{O} 22-\mathrm{C} 22$	$1.243(2)$	$\mathrm{C} 2-\mathrm{N} 3$	$1.325(2)$
$\mathrm{O} 21-\mathrm{C} 22$	$1.257(2)$	$\mathrm{C} 22-\mathrm{C} 21$	$1.531(2)$
$\mathrm{N} 5-\mathrm{O} 5$	$1.290(2)$	$\mathrm{C} 4-\mathrm{N} 4$	$1.311(2)$
$\mathrm{N} 5-\mathrm{C} 5$	$1.338(2)$	$\mathrm{C} 4-\mathrm{N} 3$	$1.346(2)$
$\mathrm{C} 6-\mathrm{O} 6$	$1.221(2)$		
$\mathrm{O} 2 W-\mathrm{Zn} 1-\mathrm{O} 3 W$	$92.69(5)$	$\mathrm{O} 5-\mathrm{N} 5-\mathrm{C} 5$	$117.75(15)$
$\mathrm{O} 2 W-\mathrm{Zn} 1-\mathrm{O} 1 W$	$91.24(6)$	$\mathrm{O} 22-\mathrm{C} 22-\mathrm{O} 21$	$125.21(17)$
$\mathrm{O} 3 W-\mathrm{Zn} 1-\mathrm{O} 1 W$	$89.92(6)$		
$\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 21$	$-179.32(15)$	$\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 22$	$0.1(2)$

Symmetry code: (i) $-x,-y,-z$.

Table 2. Hydrogen-bonding geometry $\left({ }_{A},^{\circ}\right)$

D-H. . A	D-H	H \cdots A	D. . A	D-H.
O1W-HiWB. . O 22	0.81 (3)	2.22 (3)	2.903 (2)	142 (3)
O1W-HIWA . . O4W	0.88 (3)	1.99 (3)	2.776 (2)	148 (3)
	0.84 (3)	1.89 (3)	2.729 (2)	172 (3)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WB} \cdots \mathrm{O}^{\text {I }}$	0.88 (2)	1.79 (2)	2.6662 (19)	176 (2)
O3W-H3WA. . O21 ${ }^{1}$	0.86 (2)	1.79 (2)	2.6415 (19)	170 (2)
$\mathrm{O} 3 \mathrm{~W}-\mathrm{H} 3 W B \cdot \mathrm{O} 21^{\text {m }}$	0.86 (2)	1.88 (2)	2.728 (2)	172 (2)
$\mathrm{O} 4 \mathrm{~W}-\mathrm{H} 4 \mathrm{WA}$. . $\mathrm{O6}^{1{ }^{\text {²}}}$	0.85 (3)	2.12 (3)	2.905 (2)	153 (3)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3{ }^{*}$	0.86	2.27	3.086 (2)	159.3
N4-H4A. . O5	0.85 (3)	1.94 (3)	2.613 (2)	135 (3)
N4-H4B $\cdots \mathrm{Ob}^{\text {i }}$	0.93 (3)	1.92 (3)	2.749 (2)	147 (2)

Acta Cryst. (1999). C55, 2051-2053

Bis(2-ethyl-3-hydroxy-4-pyranonato)diiodo$\operatorname{tin}(\mathrm{IV})$ acetonitrile solvate

Zaisheng Lu, ${ }^{a}$ John Burgess, ${ }^{b}$ John Fawcett ${ }^{b}$ and
David R. Russell ${ }^{b}$
${ }^{a}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221009, Jiangsu, People's Republic of China, and ${ }^{b}$ Department of Chemistry, University of Leicester, Leicester LE1 7RH, England. E-mail: jxf@leicester.ac.uk

(Received 25 August 1999; accepted 13 September 1999)

Abstract

In the title compound, $\left[\mathrm{SnI}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, the ligand donor atoms are arranged around the Sn atom in a distorted octahedron, with the iodide ligands cis with respect to one another. The acetonitrile molecule of crystallization occupies interstitial positions in the

 structure.
Comment

The tin-ligand bond distances, some of the angles subtended by ligand donor atoms at tin, and carbon-oxygen and carbon-carbon bond distances in the chelate rings of the coordinated 2 -ethyl-3-hydroxy-4-pyranonate (ethylmaltolate, etma) ligands in the title compound, bis(2-ethyl-3-hydroxy-4-pyranonato)diiodotin(IV) acetonitrile solvate, (I), are given in Table 1. The structure of

(I)
$\mathrm{Sn}(\text { etma })_{2} \mathrm{I}_{2}$ (Fig. 1) is, as expected, similar to that of its chloro analogue $\mathrm{Sn}(\text { etma })_{2} \mathrm{Cl}_{2}$ (Alsheri et al., 1999). In both cases, the geometry around the Sn atom is approximately octahedral, with the halide ligands in cis positions. There is, however, a difference in the relative disposition of the two etma ligands. In $\operatorname{Sn}(\text { etma })_{2} I_{2}$,

